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The equations of the boundary layer  associa ted  with non-Newtonian fluids obeying a rheologi-  
cal  power  law are integrated by a semi in tegra l  method based on the s imul taneous solution of 
the l inear ized equation of motion and the integral  relat ionship.  

A method of calculat ing the p rope r t i e s  of a boundary l ayer  based on the s imultaneous solution of the 
equations of motion (l inearized by means  of a suitable set  of profi les)  and the integral  re la t ionship was de-  
veloped in [1-3]. This  method may be called the semi in tegra l  o r  pa r ame t r i c - l i nea r i z a t i on  method; it gives 
a highly accura te  solution at all points except  in the region close to the b reak -o f f  point, as may be con-  
f i rmed by a calculation of the second approximation [2] and compar i son  with numer ica l  solutions.  If it is 
n e c e s s a r y  to increase  the accuracy,  the second and subsequent approximat ions  may be calculated.  In ad- 
dition to this, the semi in tegra l  method provides  s imple re la t ionships  between the fundamental  c h a r a c t e r i s -  
t ics of the boundary layer  and the veloci ty  distribution outside the l ayer  as well as the longitudinal de r iva -  
t ives  of this. 

In this paper  the semi in tegra l  method is employed to integrate the equations of the boundary layer  of 
non-Newtonian fluids obeying a rheolog[cal  power  law [4] 

n-- |  

Formula s  will be obtained for the veloci ty  distribution in the boundary layer  and the f r ic t ional  fo rces  at the 
wall  for  an a r b i t r a r y  veloci ty  distr ibution outside the layer .  Tab les  of coefficients  will be given for  ca l -  
culating the fr ict ion associa ted  with different values  of the index n. By way of example  we shall  cons ider  
flow around a c i r c u l a r  cylinder.  We shall  der ive  the f r ic t ional  s t r e s s  distr ibution on the surface  of the 
cylinde r for  var ious  values  of n, and shall  calculate  the second approximat ion for  this ease .  We shah  e s -  
tablish the re la t ionship between the position of the b reak -o f f  point on the cyl inder  and the index n of the 
non-Newtonian behavior  of the fluid. 

The p rob lem of the flow of non-Newtonian fluids obeying a power law for  a r b i t r a r y  p r e s s u r e  gradients  
has been solved by a number  of authors  using integration and other  approximate  methods [4]. However,  the 
accuracy  of these methods falls  sharply  for  values of n apprec iably  deviating f rom unity [4, 5]. The p rob-  
lem was solved in [5] in the fo rm of Blasius  se r i e s .  However,  the slow convergence  of the se r i e s  meant  
that these could only be used at shor t  d is tances  f rom the cr i t ica l  point of the cyl inder .  

The equations of the boundary layer  in fluids obeying a law of type (1) take the following fo rm [4] (in 
future we shall use d imens ionless  var iables)  

o%, o_. = u  dU + O 0 . .  
u Ox -~-v Oy dx 0!] dy ' (2) 

Ou Ov 
Ox + @ = O, (3) 

y = O ,  u = v = O ;  y = ~ ,  u = U ( x ) .  
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Trea t ing  n as a r b i t r a r y ,  let us introduce va r iab les  analogous to the va r iab les  of Her t l e r  [6] in the 
case  of a Newtonian fluid 

;c 

(D == ~UZ"-a(x)dx, g~---- @ (4) 
-2-' 

0o in (n+ 1)Old+ L 

In o rder  to obtain an equation of the P r a n d t l - M i s e s  type instead of (2), we take (4) as independent var iab les .  
Since the continuity equation is sa t is f ied on introducing the cu r ren t  function, a f ter  ce r ta in  t r ans format ions  
we may replace  the s y s t e m  (2) by the following equation 

(n + 1)(I)~ Z --qD &P U ~_. ~ 0  n-, 0@ 02~Z =0; (5) 

q~=O, Z=U~(O);  q~= oo, Z = O .  (6) 

In o rde r  to [ inear ize  this equation we use automodel solutions obtained for a power - type  veloci ty  d is -  
tr ibution U = ex m in the external  flow, as in the ease  of the Newtonian fluid [1, 3]. Denoting the automodel 
veloci ty  distr ibution by ~(~0, m, n) and using it to calculate  the coefficient  attached to the second der iva t ive  
in Eq. (5), we obtain the following l inear  equation 

(n + 1) �9 OZ OZ a I~z d~ ~-~ O2Z O. (7) 
Oo ~ Oop I dq~ [ dq~ - - ~  = 

F o r  boundary conditions (6) the solution of this equation may be expressed  by the s e r i e s  

Z = ~ AkS k, 
k = 0  

where  

So = UL S~ = * ( U 0 ' . . .  S~ = ~(U~)(k)... 

(s) 

are functions of the longitudinal coordinate x calculated from the known U(x) (' signifies differentiation with 
respect to ~). The coefficients Ak@ , m, n) are determined by the ordinary differential equations obtained 
on substituting the series (8) into (7) (. signifies differentiation with respect to ~9): 

" r t - - I  . .  

Ic*c*l Ah + q>/lk - -  (n + 1) kA h = (n + 1) Ak_ 1, 
(9) 

A 0(0)=1,  A k ( 0 ) = A  k(oo)=0.  

Using the s e r i e s  (8) we find the f r ic t ional  s t r e s s  at the wall.  Refe r r ing  this to the quantity p[UooK3n 
/pLnj1/(n+i), we obtain 

rt Qo 

k = 0  

The coeff icients  a k = -2-1[n(n + 1)] - [#(n+0]Ak(0,  m, n) a re  de te rmined  by integrat ing Eq. (9) in the same 
way as in the case  of a Newtonian fluid [3]. The values  of the f i r s t  five coeff icients  a k are  given in Table  1. 

For  a given n the coeff icients  of s e r i e s  (8) and (10) depend on the p a r a m e t e r  m de termining  the auto- 
model profi le  chosen for  l inear iz ing  the initial equation (5). The value of this p a r a m e t e r  may be de te rmined  
f r o m  the integral  re la t ionship or some other  integration condition. The choice of integration coadition has 
little effect on the resu l t s  of the calculation.  It is most  convenient [3] to use a condition based on equating 
the e n e r g y - l o s s  th icknesses  5"** cor responding  to the profi le  found f rom Eq. (8) and the automodeI profi le  
respec t ive ly .  This  condition leads to the following relat ion [3]: 

2 o k=o (11) 

6 

If, as in [3], we approximate the D k = Dk(D0) relationships by linear equations and solve the equation thus 

obtained from (!I), we may deduce a formula giving the relation between D O and the specified functions Sk(x ) : 
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TABLE 1. Va lues  of the Coef f i c i en t s  a k 

n 0,4 0,6 0,8 1 i ,2 1,4 1,6 1,8 2 

D O 0 0 0 0 0 0 0 0 0 

ao 

- - a  2 
lOaz 

--lOa 4 

0,349[ 0,325 0,324 
0,9371 0,813 0,771 
0,135] 0,113 0,103 
0,283 1 0,231 0,208 
0,054 [ 0,043 0,039 

1,7101 0,675 10,341 

0,332 [ 0,345 [ 0,360 
0,75710,754 1 0,760 
0,099 ] 0,096 [ 0,095 
0,194 0,185 0,178 
0,035 0,032 0,031 

0,18710,122 0,088 

0,374 
0,769 
0,094 
0,175 
0,030 

0,066 

0,389 
0,779 
0,093 
0.172 
0,029 

0,054 

0,403 
0.793 
0,093 
0,170 
0.028 

Do 0,044 

a o 0 ,280[  0,276 0,29310,31310,334 0 ,355  0 , 3 7 4  0 , 3 9 0  0,406 
a a 0,9661 0,770 0,669] 0,616] 0,587 0 ,570  0 , 5 5 8  0 , 5 5 3  0,548 

--a 2 0,138[ 0,109 0,09110,08110,074 0 ,070  0 , 0 6 7  0 , 0 6 5  0,063 
lOa 3 0,293 0,222 0,184 0 157 0,140 0 ,130  0 , 1 2 0  0 , 1 1 5  0,110 

--lOa 4 0,056 0,042 0,032 0,028 0,025 0 ,022  0 , 0 2 0  0 , 0 1 8  0,017 

n o 4,11 I 1,440 0,58010,296~ 0,180 0,124 0,091 0,070 0,058 

0,274[0,305 0,330[ 0,352 
0,628[0,564 0,513[ 0,514 
0,086]0,074 0,067] 0,063 
0,17410,144 0,125 / 0,117 
0,031/0,026 0,022 ] 0,020 

0,374 
0,505 
0,059 
0,106 
0,018 

0,391 
0,500 
0,057 
0,I00 
0,017 

a o 0,182 0,232 
a 1 1 013] 0,748 

--a~ 0 ,144]  0,107 
10a a 0,306 0,217 

--10a 4 0,058 0,040 

0,408 
0,493 
0,056 
0,094 
0,015 

TABLE 2. Va lues  of the Coe f f i c i en t s  b k and d k 

n 0,4 0,6 0,8 1 1,2 1,4 1,6 

--b I 
b~ 

--lOb 3 
lOb4 

dl 
d2 

lOd 3 
lOd4 

1,165 
0,439 
1,213 
0,263 
-0,52 
0,213 
-0,60! 
0,135 

0,643 0,424 0,310 
0,228 0,1441 0,100 
0,604 0,368 t 0,249 
0,127 0,076 0,050 

--0,394 --0,1661 0,046 
0,163 0,062--0,027 

--0,475 --0,172 0,090 
0,107 0,026--0,026 

0,239 
0,074 
0,178 
0,035 
0,207 

--0,088 
"0,275 

--0,056 

1,8 2 

0,195 0 ,167 0 ,145  0,133 
0,058 0 ,048  0 ,041 0,037 
0,135 0 ,110 0 ,091 0,081 
0,026 0,02I 0 ,018  0,015 
0,336 0,435 0,519 0,591 

--0, t30 --0,167 ~0,200 --0,236 
0,356 0 ,440 0,514 0,572 

--0,081 --0,098 --0,Ii0 --0,121 

Z bhS~ 

Do : k=l (12) 
So + ~ dkSh 

k = l  

The values of the first four coefficients b k and d k are given in Table 2 for different values of n. 

Practical calculations are extremely simple and are carried out in the following way. From the 
specified velocity distribution U(x) outside the layer and Eq. (4) we find the values of r and then the 
function Sk(x ). We determine the coefficients b k and d k from Table 2 for a given n, then use (12) to deter- 
mine the values of the parameter D0(x), and turn to Table 1. For each value of n this table gives the first 
five coefficients a k for three values of the parameter Do, embracing the range of D o values required from 
the practical point of view. The a k = ak(D0) dependence is very weak, so that for intermediate values of 
D O the coefficients a k may be determined by linear interpolation. This gives sufficient data to calculate the 
frictional stress at the wall from Eq. (10). 

If necessary the velocity distribution in the layer (in the x, ~0 plane) may be determined from (8). The 
coefficients A k are also tabulated. The transition to the real x, y plane and the calculation of the charac- 
teristic layer thicknesses are carried out in the same way as for a Newtonian fluid [3]. 

The results may be refined, if necessary, by taking the foregoing as a first approximation and then 
calculating the next approximations. Usually the second approximation differs little from the first, even 
in the break-off region, and consideration may be limited to the second. In the rest of the flow the first 
approximation is usually sufficient, since it is almost exactly repeated by the next approximations. 

In order to calculate the next approximations we turn (as in [2]) to Eq. (5), considering that the first 
term in this equation and the coefficient of the second derivative are calculated from the results of the 
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Fig. 1. Var ia t ion  in the d i m e n s i o n l e s s  f r i c t iona l  s t r e s s  on the s u r -  
face  of a c i r c u l a r  cy l inde r  (a) and ca lcu la ted  values  of the d imens ion -  
l e s s  f r i c t iona l  s t r e s s  in the b r e a k - a w a y  region  (b) in re la t ion  to n. 

p rev ious  approximat ion .  Then Eq. (5) may  be cons ide red  as an o r d i n a r y  l inear  equation in the function Z 
to be d e t e r m i n e d  in the next approx imat ion .  In tegra t ing  Eq. (5) under  these condi t ions  and sa t i s fy ing  the 
boundary  condi t ions  (6), we obtain 

Zi+ 1 = U 2 + I~ H~ [U 2 -b Ii (oo)l, (13) 
H~ (~) 

w h e r e  

q) (p 

J L 0r 
0 0 0 

cp 

J [i ' , U  �9 2U 2 Oq)- ' 
0 

Hi(~), [i(r a r e  the va lues  of the in tegra l s  (14) at ~0 ~ ~. 

Making use of Eq. (13) it is not  diff icult  to find the f r i c t iona l  s t r e s s  at the wall  in the (i + 1)-th ap-  
p rox ima t ion :  

~ i + l = [ n  (n q- 1)~]-'-~-f [ U2+2H~ I~ (~)-(oo) j'~ 

(!4) 

(15) 

It follows f r o m  the r e su l t an t  r e l a t ionsh ips  that the ca lcula t ion  of the next  approx imat ions  r e d u c e s  e s sen t i a l ly  
to the ca lcu la t ion  of the in tegra l s  (14). F o r  the second approx imat ion  the quant i t ies  Z, u / U ,  and the c o r -  
r esponding  de r iva t i ve s  are  de t e rmined  by means  of the s e r i e s  (8), and for  the next approx ima t ions  by means  
of Eq. (13). 

The in tegrand defining ! in Eq. (14) i n c r e a s e s  infini tely as ~o ~ 0, and in the equation defining F it 
b e c o m e s  inde te rmina te .  Expanding these exp re s s ions  in s e r i e s  around qo = 0, it may  be shown that the in- 
t egrand  in F and the in tegra l  i tself  vanish  at ~o = 0, while the in tegrand in I i n c r e a s e s  without  l imi t  as  ~o -1/2. 
Close  to ~ = 0 I m a y  be e x p r e s s e d  by the fol lowing s e r i e s :  

I -  2a/2(n+ 1) U2n-1 @/2 
2~-i 2 n - 1  $1@/2 b~Sh + . . . .  

3 in (n q- 1)O]~("+11 'v~ z~ 5(n+ 1) 

whe re  b k = 2nl/(n + l) (n + 1) (n + 2) /(n + l) (ak_l + kak). This  s e r i e s  enables  us to d e t e r m i n e  the value of I fo r  
a ce r t a in  ~o 0 c lose  to z e r o  (in our  p r e se n t  ca lcu la t ions  % = 0.005). Subsequent ca lcu la t ion  p r o c e e d s  n u m e r -  
ical ly.  

F i g u r e s  l a  and b show the ca lcu la ted  f r i c t iona l  f o r c e s  at the wall  of a c i r c u l a r  cy l i nde r  fo r  a s inu-  
soidal  ve loc i ty  d is t r ibu t ion  at the outer  boundary  of the boundary  l aye r :  U = s inx .  The b roken  lines show 
the r e su l t s  of a ca lcu la t ion  based  on Eq. (10); the cont inuous  l ines  r e p r e s e n t  the second approximat ion .  
In addition to th i s ,  the points  in Fig.  lb r e p r e s e n t  the data  obtained for  a Newtonian fluid (n = 1) in [7] by 
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Fig. 2. Dependence of the cen-  
tral  angle x~ on the index n. 

numerical  integration of the boundary- layer  equations, these being 
given for  the sake of comparison.  

We see from the resul ts  presented that a calculation based on 
Eq. (10) agrees  with the resul ts  of the second approximation for all n 
and everywhere  except in the region close to the break-away point. 
Close to this point ser ies  (8) and (10) diverge for n ~ 1. Nevertheless,  
the use of four t e rms  with n > 1 and five with n < 1 in se r ies  (10) yields 
quite good results  even in this region (Fig. lb). The values of the cen-  
tral  angle x ~ defining the position of the break-away point found in the 
f i rs t  and second approximations differ by only 3-4 ~ for all values of n. 
This is no g rea te r  than the differences attributable to approximate 

methods of calculation (such as integration methods) even in the case of a Newtonian fluid, for which the 
e r r o r s  are well known [4, 5] to be much smal le r  than in the case of n ~ 1. 

We may judge the accuracy of the resul ts  obtained f rom the extent to which the second and f i rs t  ap- 
proximations agree, and also f rom the comparison with numerical - in tegrat ion data presented in Fig. lb, 
f rom which it follows that for n = 1 the two resul ts  pract ical ly  coincide. 

Thus the proposed method of calculation ensures  a reasonably high accuracy  in the f i rs t  approxima-  
tion (semi[ntegral method) at every point except in the region close to the break-away point, at which the 
second approximation [s essential  in o rder  to produce an accuracy  of the same order .  

We see f rom Fig. l a  that, as the index n represent ing the non-Newton[an behavior of the fluid dimin- 
ishes, the fr ict ional  s t ress  at the wall of the cylinder increases .  The break-away point then moves down- 
ward along the flow. The dependence of the central  angle x~ defining the position of the break-away point 
on the index n is extremely weak and almost l inear (Fig. 2). 

The very  slight dependence of the position of the break-away point on the index supports the conten- 
tion of earlLer authors [8] to the effect that the mechanism underlying the v iscous-e las t ic  behavior of the 
fluid provides an explanation for the observed protract ion of the break-away region when a pseudo-plast ic  
fluid passes  around a cylinder.  

In conclusion, we may note that the proposed method of calculation may be used for integrating the 
equations of motion even for  rheolog[cal laws more complicated than ordinary power laws. In order  to 
l inearize the original equation in this case we may use not only automodel solutions but also any other f am-  
ily of functions containing pa ramete r s  and satisfying the corresponding conditions, for example, the families 
used in the construction of integration methods. 

N O T A T I O N  

x, y are the Cartesian coordinates; 
u, v are the components of the velocity vector along the coordinate axes; 
U is the velocity of the external flow; 
~b is the current  function; 
Z = U 2 - u 2 is the auxiliary variable; 
T iS the s t r e ss  tensor; 
e is the tensor  of deformation (shear) rates;  
K is the consis tency index of the fluid; 
n is the index represent ing the non-Newton[an behavior of the fluid; 
m is the index in the power law of the external velocity distribution; 
T w is the s t r e s s  at the wall; 
J is the second invariant of the tensor  of deformation ra tes  [4]. 

As scales for the dimensionless quantities we take: for x, the charac ter i s t ic  dimensions of the body L; 
fory ,  L/Rel / (n+0,  Re = (u2-nLn)/(K/p) the generalized Reynolds number; for u, U, the velocity a long way 
f rom the body U~; 

1 1 
U~ [ KLU2n--I ] n-i- |-_~-" u3n[<'] n-}l. 

l ; , - -  i~W--PL L,,p j U - -  

Ren+--']" p 
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